On Consistency of Kernel Density Estimators for Randomly Censored Data: Rates Holding Uniformly over Adaptive Intervals

نویسنده

  • Armelle Guillou
چکیده

In the usual right-censored data situation, let fn, n∈N, denote the convolution of the Kaplan-Meier product limit estimator with the kernels a−1 n K(·/an), where K is a smooth probability density with bounded support and an→0. That is, fn is the usual kernel density estimator based on Kaplan-Meier. Let f̄n denote the convolution of the distribution of the uncensored data, which is assumed to have a bounded density, with the same kernels. For each n, let Jn denote the half line with right end point Zn,n(1−εn)−an, where εn→0 and, for each m, Zn,m is the m-th order statistic of the censored data. It is shown that, under some mild conditions on an and εn, supJn |fn(t)−f̄n(t)| converges a.s. to zero as n→∞ at least as fast as √ | log(an∧εn)|/(nanεn). For εn=constant, this rate compares, up to constants, with the exact rate for fixed intervals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

A Bayesian Approach for Bandwidth Selection in Kernel Density Estimation with Censored Data

Estimating an unknown probability density function is a common problem arising frequently in many scientific disciplines. Among many density estimation methods, the kernel density estimators are widely used. However, the classical kernel density estimators suffer from an intrinsic problem as they assign positive values outside the support of the target density. This problem is commonly known as...

متن کامل

Density and hazard rate estimation for right censored data using wavelet methods

This paper describes a wavelet method for the estimation of density and hazard rate functions from randomly right censored data. We adopt a nonparametric approach in assuming that the density and hazard rate have no speci c parametric form. The method is based on dividing the time axis into a dyadic number of intervals and then counting the number of events within each interval. The number of e...

متن کامل

Adaptive warped kernel estimators

In this work, we develop a method of adaptive nonparametric estimation, based on "warped" kernels. The aim is to estimate a real-valued function s from a sample of random couples (X,Y ). We deal with transformed data (Φ(X), Y ), with Φ a one-to-one function, to build a collection of kernel estimators. The data-driven bandwidth selection is done with a method inspired by Goldenshluger and Lepski...

متن کامل

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999